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SPECIAL CIRCLES IN MECHANICS

M. Haves
Mathematical Physics, University College Dublin, Eire

Abstract—W. Thomson and P. G. Tait ( Principles of Mechanics and Dynamics, Dover, 1962) noted
that for any deformation at any particle there is at least one plane circle of material elements all of
which suffer precisely the same stretch. It has been shown that these material elements suffer no
shear. These are typical of the results which may be obtained by considering ellipsoids associated
with real non-singular second-order tensors. It is shown that the results may also be obtained
provided the second-order tensor has at least one zero eigenvalue. Applications to strain, both finite
and infinitesimal, rate of strain and stress are presented.

[. INTRODUCTION

This paper is concerned with real second-order tensors which occur in mechanics, such as
strain and stress tensors. An ellipsoid may be associated with any non-singular second-order
tensor. Occasionally, if, for example a tensor such as the rate of strain tensor is singular, it
may nevertheless have an ellipsoid associated with it for the purpose of obtaining certain
properties. Generally an ellipsoid has two central circular sections—of course in the case
of a spheroid (ellipsoid of revolution) there is only one central circular section whilst in the
case of a sphere there is an infinity of such sections. It is of value to consider these central
circular sections for the various cllipsoids because generally they have special identifiable
propertics. Such a special property was first noted by Thomson and Tait (1962). They
observed for a general deformation at any particle X, that all material elements which
undergo the same extension lic on a cone except in one particular case where the cone
becomes two planes. These two planes are the planes of the central circular section of the
strain ellipsoid dX"C dX = | where C is the left Cauchy-Green strain tensor. [t may also
be shown (Hayes, 1988) that material elements in these planes suffer no shear—the angle
0 (say) between a pair of material elements before deformation is also the angle between
the stretched elements after the deformation.

Similar results are valid for infinitesimal strain and for rate of strain. Also we present
results for area elements and for stress tensors.

First we recall a general resuit for non-singular second-order tensors and prove that
the same general result is also valid when the tensor possesses only one zero eigenvalue.

Notation
The summation convention is used throughout—repeated suffixes imply summation
over |, 2, 3. The vectors n, m, N and M are unit vectors throughout.

2. BASIC RESULTS

Here we provide the mathematical setting for the results which follow. We recall the
general theorem (Hayes, 1990) for non-singular second-order tensors, and derive an identity
which is very useful in visualising the role of the central circular sections. Then we partially
extend the theorem to include singular tensors with one zero eigenvalue.

Theorem. Let ¥ be any real non-singular second-order tensor. Let N be an arbitrary
unit vector and let the vector R, be given by R, = ¢N. Then there exists at least one
circle of special directions for N such that the corresponding Ry, also lie on a circle. Further,
if @ is the angle between any pair of special directions, say N’ and N”, then @ is also the
angle between Ry, and Rn-y. The number of circles of special directions is equal to the
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number of central circular sections of the ellipsoid X"¢ ¢ X = 1 : one. if the ellipsoid is a
spheroid ; two. if the axes of the ellipsoid are all unequal ; infinity, if the ellipsoid is a sphere.

Because some of the ideas are needed in the sequel we present the general proof here,
referring to the paper (Hayes, 1990) for the cases of equal eigenvalues.

Proof. We have
R =4, N, (n
where repeated suffixes are summed over [, 2. 3. Let ¢ be defined by

¢ = ’»z’rlf’ Qs = Wt X5 2)

Then ¢ is real, symmetric and positive definite. It possesses real positive eigenvalues ¢,
(say). We assume, for the moment, that these are ordered ¢, > ¢. > ¢;. and let J™ be the
corresponding mutually orthogonal unit eigenvectors of ¢. Then

bup =G0+ 1 MP =PI L Mg+ Lyhl ). 3
where the unit vectors L and M are given by

\/’((b( )Ll = /(¢ —¢2)J" ‘*‘\/”(‘/’: —~p I,
\f(ff): —¢pIM = \,"I(‘f’s — ) I “\/(‘f’z — g e

Associated with ¢ is the cllipsoid &1 ¢, X Xy = 1. This has two central circular
sections, cach of radius (¢,)~ 2. They lic on the planes , and Z, (say), with unit normals
L. and M, respectively.

If N is any unit vector in the plane 2, then N+ L = 0, and hence using (3):

Rini "Ry = Nyt gy Ny = pyNyNy = b, (3)

Thus, for any N along a radius of the central circular section in the plane X, the cor-
responding Ry, are cach of length ().

If N and N are any two unil vectors in the plane £, and if ¥ is the angle between
them, then using (1) and (3):

R(.\. : R(.\) = '//mNAme‘H = p NNy = (Z):/V4/V_'4 = (p, cos 0, (6)

and hence, using (3), # is also the angle between Ry, and Riw,. Further, using a result on
second-order tensors (Chadwick, 1976, p. 20):

R A Ry = (UN) A (YN) = (det ) (¢ HY(N A N)
= (det ) sin 04(¢ " ")'L}, 7N
so that for all N and N’ lying in the planc £, with unit normal L, the corresponding Ry,
and R, lie in the plane o, (say) with normal along (¢~ ')"L.
There are thus two circles of special directions if ¢, > ¢, > ¢,. It may be shown that

there arc only two (Hayes, 1990).
For the ellipsoid & the planes of the central circular sections are

b s X4 Xp = ¢2X,4"YA‘ (8}

The connections between the various central circular sections are best visualised by
considering the homogeneous deformation
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x=yX, X=¢ 'x, ®

where ¢ is a constant tensor. Then the unit sphere X"X =1 becomes the ellipsoid
x7y " 'T~'x = | whilst the ellipsoid ¢ is deformed into the unit sphere x'x = 1. We note
the identity

XYYX - X'X =x"x—x"y 'y 'x
= — (XU Ty =N, (10)

so that the central circular sections of radius (¢-) " * of the “‘material” ellipsoid X"y "¢ X = 1
go into the central circular sections of the “‘spatial” ellipsoid X"y~ "¢~ 'x = 1 of radius

(¢~ "

Remark.  singular. For the purposes of the theorem it is assumed that ¢ is not
singular. Here we relax this and assume that one of the eigenvalues of ¢ is zero. Let the
corresponding eigenvector be S (say). Then because ¢S =0 it follows also that
@S = ¢7yYS = 0 and hence we take S = J'. Now ¢ is positive semi-definite. We still have
(3) with ¢, = 0.

In order to associate an ellipsoid with ¢ in this case, we consider ® = ¢+ 1. where f
is positive. The eigenvalues of ®, namely ¢, +f. ¢, +f5. B are all positive and the cor-
responding eigenvectors are J'. We have

Gup = (P2 +PSun+ i (HiH, +HHG), (rn
where
()" HE = (py =) IV £ ()2, (12)

Associated with @ is the cllipsoid £: @, X, X, = |. Its two central circular sections are
cach of radius (¢, + ) "2 and lic on planes £t (say) with normals H®,

If N is any unit vector in the plane £+, then H* « N = 0 and we may write any such N
in the form

N =07 cos0+(d) "2 {($)" 00~ (b, — )"0} sin 0. (13)
We have
YN = I cos 04 (/)" *Pd' sin 6. (14)

Now J@ and J'" are cigenvectors of the real symmetric tensor @ corresponding to distinet
eigenvilues and hence

J(I)T¢T¢J(l) =J{IDF¢J(2) =0’ (15)

so that ¢J" and ¥J'? arc orthogonal. Then directly from (14), as before, we have
R “Rixy = @2, Riny " Rinvy = ¢,N-N’. Thus for any N lying along a radius of the central
circular section of the @ ellipsoid in the plane £ *, the corresponding Ry, are each of length
(¢:)' % and for N and N’ lying in Z* the angle between them is equal to the angle between
R\, and R,. (Similar statements are valid for N lyingin £-.)

We may no longer use (7) because ¢ ~' is not defined. Even so it is clear from (14) that
all the vectors ¢N lic in the plane spanned by the non-zero orthogonal vectors ¢J" and
wJ(Z).

Finally we note thatif ¢, = ¢, # 0, ¢, = 0.and if J'”' is the eigenvector corresponding
to the zero eigenvalue then we have
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¢, =$.03,~JI"). (16)

Forany N, N' orthogonal to J'¥, then Ry, "Ry = N"9N = ¢, and Ry, "Ry = ¢ N*N’.
Thus in this case there is only one plane of special directions.

Thus the theorem has been extended to include singular tensors with one zero eigen-
value.

Now we turn to some applications.

3. FINITE STRAIN

For the deformation x = X(X) taking the particle X to the place x, let the deformation
gradient be denoted by F. Then the material element dX at X is deformed into dx at x
where

dx =FdX, dy, = F, dX,, (an
and
Fiu = x,4(=0x,/0X ). (18)
Now F is non-singular and
dX = F 'dx, dX,= F.'dx. F'= X (=0X,/0x). (19

The left and right Cauchy Green strain tensors B and C are given by
l‘ = ]:l:r, C = FIAF, B'l = .\‘,v,‘.\‘,‘,(. CAH = 4Y1'4.x‘_v, (20)
The principal stretches at X are 4,. 4, A4, They are the positive square roots of the
cigenvalues of C. We assume the ordering 4, > 4, > 4y,
If N and M are unit vectors along material elements at X and 8 is the angle between
them, then the shear yy u, of the pair of material elements is given by

cos (0+ym.m) = CaaNaMp/[AnyAon ] 2y

where 4, the streteh of the element along N, is given by

oy = \/é:;NANB- 22

Let I' be the mutually orthogonal unit eigenvectors of C with corresponding eigen-
values 27, Then, as in Section 2, we write

Cin= A0+ AT —iD{HIH; +HH;}, (23)

JASAHE = A1 -0 (24)

The central circular sections of the ellipsoid

CipdX, dX, =2a, |« (25)

lic on the planes
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CAH dXA dX3=i§ dXA dX‘. (26)
Proceeding as in Section 2 we have the identity
(Cig—430,4) dX, dX; = —;-g(BJ : “;-2—:5:';) dx; dx, 27

so that the central circular sections of the ellipsoid (25) are deformed into the central
circular sections of the ellipsoid

B;'dx, dx; = o%. (28)

All material elements in the planes (26) are stretched by the same amount 4,. This was
the observation of Thomson and Tait (1962, Section 167). However. elements in these
planes have the further property (Hayes. 1988)—noted by Thomson and Tait in the case
of pure shear—that they suffer no shear. Indeed for a pair of material elements N and M
such that N+ M = cos 8, and which lie in the plane whose normal is along H* or H™ it is
seen immediately from (23) that

Cv.”ﬂVAN” = C{.u;/"[/.(ﬁ’g = lz.g. C,‘BNAA/IH = AgNAM,‘ = ;»g COs 9'

and hence from (21), cos (0 +7y) = cos 0. Because this is valid for all ¢ it follows that the
sheary = 0.

Area elements
We recall that the material vector area element AA at X is deformed into the clement
Aa at x where, by Nanson's formula (Truesdell and Toupin, 1960) :

Aa,, = det (F)0X/0x,AAy. (29)
Let
AA, = AAN,, Aag, = Aan,. (30)
Then
(Aa)* = (det F)’C 3 N Ng(AA)>. (&2))]

For N lying along radii of a central circular section of the ellipsoid of C~':
C 8 X, Xy =1, wehave

(Aa)? = (det F)2is;3(AA)? = A]13(AA)?, (32)
and thus
Aa = A, A,AA. (33)

Hence all material arcal elements with normals N along radii of a central circular section
of the ellipsoid of C~' are subjected to the areal magnification 1,4,. Further, the angle
between the normals N is preserved. Thus if N and N” are two such normals in the
undeformed body then the corresponding equal areal elements AAN" and AAN” are
deformed into two equal arcal elements Aa’ = 4,4;A4n" and Aa” = 4, 1,A4An” where
wen' = NN
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4 INFINITESIMAL STRAIN

Let

[¥9]

x=X+UX) x,=YX+01iX) (34)
where U is the displucement. Then within the context of the infinitesimal strain theory, C
is approximated by

. Uy Uy B
Ciuw=0,3+2E, 2E,=_. + ... (335)
AV

The strain tensor E 1s not in general positive definite. Indeed in the very basic case of
simple shear E is singular. We may however associate with 1t an  ellipsoid
(E 5+ 06 8)X, X = | where ffis a suitably large positive scalar. The eigenvalues of E+ fi1
are (E, + ) where £, are the eigenvalues of E.

We assume £, > E. > E,. The stretch of a material element along N at X s
I+ E N Ny

The increase 7 an the angle 0 between the pair of material clements along N and M at
X is given by Thomas (1961) ;

(=sin )y = 2E N My—Epp(Np Ny + MM cos . (36)

We note that if in (36), E s replaced by E 4 1 then 3 remains unchanged. This is because
the replacement of B by Fo4 il s cquivalent to the superposition upon the given dis-
placement ficld U of the further radial displacement U = fiX which should not aitect the
sheur of clements. Such superposition is additive in the case of infinitesimal strain.

For material clements lying in the plane of the central circular section of the ellipsoid
(L Po Y Xy = Fat X, we tind, as before, that these clements are all stretehed by the
sameamount (1 + £,), and further, pairs ol such clements are not sheared. K™ are the unit
cigenvectors of K, corresponding to the cigenvalues £/, then K™ are also the cigenvectors of
£+ 1, and the normals to the plancs of the central circular sections are along K* (say)
given by

K' = (£ = 1) K 2 (8 - F) R (37)

Area elements
Within the context of infinitesimal strain

cx, . au,
~ = ‘);/ T oMy v
cx, X,

Cod =8,4=2E . det(F)=1+£E,, (38)

and equations {29) and (31) become

Ad,, = (1+ £ Wy, — UL )AA
N E g = ExyNaN oy AL (39)

Aa

on using (30). Thus the ratio of the change in arca per unit initial arca for a material arcal
clement whose normal is along N is

(Aa—Ad) DA = (dx.‘l — Ny Niy) gy (40)

If N is orthogonal to K™ or K L then £, NNV = E.and (Au—AAd) A = £+ E
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Thus all material areal elements with normals N along radii of a central circular section
of the ellipsoid of E+ f1 are subjected to the area magnification | + £, + E;. Further, the
angle between the normals is preserved.

5. RATE OF STRAIN

From (17), using a dot ( - ) to denote the material time derivative we have
dx, = (ér,/éx,) dx,. 1y

For the material element dx = dxn at x, it may be shown (Truesdell and Toupin, 1960)
that

dx = d,nn, dx, 42)

where d,; is the rate of strain tensor
2d,, = (dv,fdx, + dv,/dx,). (43)

If the angle between two material elements dx” and dx‘® at x be denoted by «, and
if dx'? = dx'"n, dx? = dx"“m then

dx!? dx? = det” d'? cos a. (44)

It may be shown that the shearing, 4, of the pair of material clements instantancously
directed along nand m at x, is given by

—(sin 2)a = 2d,,n,m, —d, (nn,+mm) cos a. (45)

We note that if the motion is changed from ¢; to v, +kx, where & is a constant, then
d, is changed to d,, +4d,,, d, n.m, becomes d, nm, + k cos a, d,,nn, becomes d,nn, + k. But
the expression (45) is unchanged. Thus we associate with the motion the “d” ellipsoid
(d, +4&d,)x.x, = | where &k is a suitably large constant.

For material clements instantancously lying in a plane of a central circular section of
the d ellipsoid, the stretchings are all equal to d, where d, (with d, > d, > d,) are the
principal stretchings, the cigenvalues of d,;. These eigenvalues may take any values.

Also if n and m are directed along material elements lying instantancously in the plane
of the central circular section of the d cllipsoid, thend, n,m, = d, cos 2, d nn, = d, mm, = d,
and hence 2 = 0. Thus there is no shearing for material clements lying instantaneously in
a plane of a central circular section of the d ellipsoid. The normals to these planes are S*
(say) given by

S* = {(d,—~d;)"%e, £ (d;—d;)"?e;}(d, —d;) "7, (46)
where e, are the unit eigenvectors of d corresponding to the eigenvalues d, (x = 1, 2, 3).

6. STRESS

The traction Ty, across a material element with normal N at X in the reference
configuration is given by
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T(y, = nN. 7‘(:\), = HHA’VA. (47)

where I1 is the Piola-Kirchhoff stress tensor. If I is known to have at most one zero
eigenvalue. then [T,y | has the same value for all N lying in the plane(s) g (say), the central
circular section(s) of the ellipsoid X'(IT"I1+ 1)X = 1, where B is a positive constant.
Further, for any pair N" and N” lying in g, the angle between T\ and T -, is equal to the
angle between N and N”.

The traction t,,, across a material element with normal n at x in the current con-
figuration is given by

to =t Ly, =10, (48)

where ¢, is the (symmetric) Cauchy stress tensor. Again, if t is known to have at most one
zero eigenvalue, then |t(n)| has the sume value for all n lying tn the plane(s) ¢ (say) of the
central circular section(s) of the ellipsoid x7(t"t+ f1)x = 1 where B is a positive constant.
Further, for any pair n” and n” lying in o, the angle between t,,, and t.-, is equal to the
angle between n” and n”,
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